Write your message
Volume 19, Issue 41 (12-2023)                   Marine Engineering 2023, 19(41): 59-73 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ahmadi A, nozari M A, bayat M, delavari E. Experimental study of the mobilized shear strength between calcareous sand and steel / concrete piles using the direct shear test. Marine Engineering 2023; 19 (41) :59-73
URL: http://marine-eng.ir/article-1-1025-en.html
1- PhD student, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2- Assistant Professor, Department of Civil Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
Abstract:   (419 Views)
In this paper, in order to investigate the interaction of calcareous sand and pile, a series of direct shear tests have been performed. To achieve this goal, piles have been considered in both steel and concrete forms. The material representative of the pile was placed in the lower box and the sand was placed in the upper box. The main variables of this research are pile materials (steel and concrete), normal stress level, soil relative density, pile surface roughness, and the angle of the shearing surface relative to the grooves created on the pile surface. The results show that the shear strength parameters obtained at the boundary between the pile and the sand are a function of various factors such as the geotechnical characteristics of the sand and the roughness of the pile surface. As the relative density of the soil increases and the surface roughness of the pile increases, the friction angle mobilized on the surface between the pile and the sand increases. The friction angle between pile and soil in steel samples is higher than in concrete samples for surface roughness. The results of the tests show that the shear resistance between the plates and sand is higher in the state of the shearing direction perpendicular to the direction of the grooves of the plates. Crushing in carbonate sand after applying shear stress at the end of the test is more in steel plates than in concrete plates.
 
Full-Text [PDF 2729 kb]   (66 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2023/01/18 | Accepted: 2024/01/26

References
1. Mohammad Alinejad R, Bayat M, Nadi B, Pakbaz MS (2021) Response of pile group adjacent to a slope crest under static axial loading. Arabian Journal of Geosciences 14:1-12. [DOI:10.1007/s12517-021-09123-7]
2. Bian X, Liang Y, Zhao C, et al (2020) Centrifuge testing and numerical modeling of single pile and long-pile groups adjacent to surcharge loads in silt soil. Transportation Geotechnics 25:100399. [DOI:10.1016/j.trgeo.2020.100399]
3. Malik AA, Kuwano J, Tachibana S, Maejima T (2017) End bearing capacity comparison of screw pile with straight pipe pile under similar ground conditions. Acta Geotechnica 12:415-428. [DOI:10.1007/s11440-016-0482-4]
4. Haghbin M, Ghazavi M (2016) Seismic Bearing Capacity of Strip Footings on Pile-Stabilized Slopes. Civil Engineering Infrastructures Journal 49:111-126. [DOI:10.7508/ceij.2016.01.008]
5. Hakimelahi N, Bayat M, Ajalloeian R, Nadi B (2023) Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands. Case Studies in Construction Materials 18:e02014. [DOI:10.1016/j.cscm.2023.e02014]
6. Tavakol K, Bayat M, Nadi B, Ajalloeian R (2023) Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand. KSCE J Civ Eng. [DOI:10.1007/s12205-023-0695-7]
7. Choo H, Kwon M, Touiti L, Jung YH (2020) Creep of calcareous sand in Tunisia: effect of particle breakage at low stress level. International Journal of Geo-Engineering 11:. [DOI:10.1186/s40703-020-00123-2]
8. Wang Z (2010) Soil creep behavior: laboratory testing and numerical modelling. University of Calgary
9. Ramadan MI, Meguid M (2020) Behavior of cantilever secant pile wall supporting excavation in sandy soil considering pile-pile interaction. Arabian Journal of Geosciences 13:1-13. [DOI:10.1007/s12517-020-05483-8]
10. Reddy ES, Chapman DN, Sastry VVRN (2000) Direct Shear Interface Test for Shaft Capacity of Piles in Sand. Geotechnical Testing Journal 23:199-205. https://doi.org/10.1520/GTJ11044J [DOI:10.1520/gtj11044j]
11. Chen RP, Zhou WH, Chen YM (2009) Influences of soil consolidation and pile load on the development of negative skin friction of a pile. Computers and Geotechnics 36:1265-1271. [DOI:10.1016/j.compgeo.2009.05.011]
12. Deb P, Pal SK (2021) Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based artificial neural network. Frontiers of Structural and Civil Engineering 15:1181-1198. [DOI:10.1007/s11709-021-0744-6]
13. Al-Mhaidib AI (2005) Loading rate effects on pile groups in clay. Electronic Journal of Geotechnical Engineering 10 E:
14. Tomlinson M, Woodward J (2007) Pile Design and Construction Practice. In: Pile Design and Construction Practice. https://www.routledge.com/Pile-Design-and-Construction-Practice/Tomlinson-Woodward/p/book/9780367659011. Accessed 13 Apr 2021 [DOI:10.4324/9780203964293]
15. Alinejad RM, Bayat M, Nadi B, Pakbaz MS (2023) Experimental Study of Axially Loaded Pile Group Near a Sloping Ground. Period Polytech Civil Eng. [DOI:10.3311/PPci.18334]
16. Aldaeef AA, Rayhani MT (2019) Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature. Soils and Foundations 59:2110-2124. [DOI:10.1016/j.sandf.2019.11.003]
17. Aldaeef AA, Rayhani MT (2021) Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature. Cold Regions Science and Technology 191:103377. [DOI:10.1016/j.coldregions.2021.103377]
18. Su LJ, Zhou WH, Chen W Bin, Jie X (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement: Journal of the International Measurement Confederation 122:339-346. [DOI:10.1016/j.measurement.2018.03.003]
19. Noroozi AG, Ajalloeian R, Bayat M (2022) Effect of FTC on the interface between soil materials and asphalt concrete using a direct shear test. Case Studies in Construction Materials 17:e01632. [DOI:10.1016/j.cscm.2022.e01632]
20. Noroozi AG, Ajalloeian R, Bayat M (2022) Experimental study of the role of interface element in earth dams with asphalt concrete core - Case study: Mijran dam. Case Studies in Construction Materials 16:e01004. [DOI:10.1016/j.cscm.2022.e01004]
21. Janipour AK, Mousivand M, Bayat M (2022) Study of interface shear strength between sand and concrete. Arab J Geosci 15:172. [DOI:10.1007/s12517-021-09394-0]
22. Tang L, Du Y, Liu L, et al (2021) Experimental study of the frozen soil-structure interface shear strength deterioration mechanism during thawing. Arabian Journal of Geosciences 14:. [DOI:10.1007/s12517-021-08673-0]
23. Zhao L, Yang P, Wang JG, Zhang LC (2014) Cyclic direct shear behaviors of frozen soil-structure interface under constant normal stiffness condition. Cold Regions Science and Technology 102:52-62. [DOI:10.1016/j.coldregions.2014.03.001]
24. Chen X, Zhang J, Xiao Y, Li J (2015) Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests. Canadian Geotechnical Journal 52:1122-1135. [DOI:10.1139/cgj-2014-0399]
25. Wang H-L, Zhou W-H, Yin Z-Y, Jie X-X (2019) Effect of Grain Size Distribution of Sandy Soil on Shearing Behaviors at Soil-Structure Interface. Journal of Materials in Civil Engineering 31:04019238. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002880 [DOI:10.1061/(asce)mt.1943-5533.0002880]
26. Yang P, Xue SB, Song L, Duan M shi (2018) Interface shear characteristics of dredger fill and concrete using large size direct shear test. International Journal of Geo-Engineering 9:. [DOI:10.1186/s40703-018-0081-3]
27. Hu L, Pu J (2004) Testing and Modeling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering 130:851-860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851) [DOI:10.1061/(asce)1090-0241(2004)130:8(851)]
28. Jotisankasa A, Rurgchaisri N (2018) Shear strength of interfaces between unsaturated soils and composite geotextile with polyester yarn reinforcement. Geotextiles and Geomembranes 46:338-353. [DOI:10.1016/j.geotexmem.2017.12.003]
29. Di Donna A, Ferrari A, Laloui L (2016) Experimental investigations of the soil-concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal 53:659-672. [DOI:10.1139/cgj-2015-0294]
30. Angemeer J, Carlson E, Klick JH (1978) Techniques and results of offshore pile load testing in Calcareous soils. Proceedings of the Annual Offshore Technology Conference 1973-April:II677-II692. https://doi.org/10.4043/1894-MS [DOI:10.4043/1894-ms]
31. Dyson GJ, Randolph MF (2001) Monotonic Lateral Loading of Piles in Calcareous Sand. Journal of Geotechnical and Geoenvironmental Engineering 127:346-352. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346) [DOI:10.1061/(asce)1090-0241(2001)127:4(346)]
32. Tabucanon JT, Airey DW, Poulos HG (1995) Pile skin friction in sands from constant normal stiffness tests. Geotechnical Testing Journal 18:350-364. https://doi.org/10.1520/GTJ11004J [DOI:10.1520/gtj11004j]
33. Lehane BM, Schneider JA, Lim JK, Mortara G (2012) Shaft Friction from Instrumented Displacement Piles in an Uncemented Calcareous Sand. Journal of Geotechnical and Geoenvironmental Engineering 138:1357-1368. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000712 [DOI:10.1061/(asce)gt.1943-5606.0000712]
34. Jiang H, Wang R, Lü YH, Meng QS (2010) Test study of model pile in calcareous sands. Yantu Lixue/Rock and Soil Mechanics 31:780-784
35. Nauroy JF, LeTirant P (1985) Driven piles and drilled and grouted piles in calcareous sands. Proceedings of the Annual Offshore Technology Conference 1985-May:83-91. https://doi.org/10.4043/4850-MS [DOI:10.4043/4850-ms]
36. McDowell GR, Bolton MD (2000) Effect of particle size distribution on pile tip resistance in calcareous sand in the geotechnical centrifuge. Granular Matter 2:179-187. [DOI:10.1007/PL00010913]
37. Ismael NF (1989) Skin Friction Of Driven Piles In Calcareous Sands. Journal of Geotechnical Engineering 115:135-139. [DOI:10.1061/(ASCE)0733-9410(1989)115:1(135)]
38. Ismael NF, Al-Sanad HA (1986) Uplift capacity of bored piles in calcareous soils. Journal of Geotechnical Engineering 112:928-940. [DOI:10.1061/(ASCE)0733-9410(1986)112:10(928)]
39. Cui MJ, Zheng JJ, Chu J, et al (2021) Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica 16:1377-1389. [DOI:10.1007/s11440-020-01099-0]
40. Donohue S, O'Sullivan C, Long M (2009) Particle breakage during cyclic triaxial loading of a carbonate sand. Geotechnique 59:477-482. [DOI:10.1680/geot.2008.T.003]
41. Jafarian Y, Javdanian H (2020) Dynamic Properties of Calcareous Sand from the Persian Gulf in Comparison with Siliceous Sands Database. International Journal of Civil Engineering 18:245-249. [DOI:10.1007/s40999-019-00402-9]
42. Spagnoli G, Doherty P, Wu D, Doherty M (2015) Some mineralogical and geotechnical properties of carbonate and silica sands in relation to a novel mixed-in-place pile. Offshore Mediterranean Conference and Exhibition, OMC 2015
43. Kou H lei, Diao W zhou, Zhang W chun, et al (2021) Experimental Study of Interface Shearing between Calcareous Sand and Steel Plate Considering Surface Roughness and Particle Size. Applied Ocean Research 107:102490. [DOI:10.1016/j.apor.2020.102490]
44. He SH, Shan HF, Xia TD, et al (2021) The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotechnica 16:613-633. [DOI:10.1007/s11440-020-01030-7]
45. Das BM (2021) Principles of geotechnical engineering. Cengage learning
46. Bowles JE (1988) Foundation analysis and design

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.